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ABSTRACT

A method is developed for calculating the growth of a turbulent
boundary layer at hypersonic Mach numbers. Excellent agreement with
experimental results from axisymmetric nozzles has been obtained by
the application of this method. The method utilizes a modification of
Stewartson's transformation to simplify the integration of the momentum
equation. Heat transfer is taken into account by evaluating the gas prop-
erties at Eckert's reference temperature and by using a modification
of Crocco's quadratic for the temperature distribution in the boundary
layer. A new empirical relation is used for the incompressible friction
coefficient which agrees with experimental data over a Reynolds num-
ber range from 10° to 107,

NOMENCLATURE
A Flow area
a Speed of sound
Cs Local skin-friction coefficient
Cr Mean skin-friction coefficient
h Enthalpy
H Boundary layer form factor
M Mach number

Parameter in power-law equations for skin friction

Function defined in Eq. (4)

p Pressure

Q Function defined in Eq. (4)

R* Radius of curvature of nozzle at the throat

Ry Reynolds number based on x

Ry Incompressible Reynolds number based on X

Rg Reynolds number based on ¢

r Local distance from axis of flow to wall

s Distance measured along wall surface
Temperature

Transformed velocity component parallel to wall
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Velocity component parallel to wall

X Transformed coordinate along axis of flow
x Coordinate along axis of flow

Y Transformed coordinate normal to wall

y Coordinate normal to wall

a Function defined in Eq. (20)

B Function defined in Eq. (21)

Y Ratio of specific heats

5* Boundary-layer displacement thickness

A Boundary-layer thickness

0 Boundary-layer momentum thickness

p Dynamic viscosity

p Density

Tw Shearing stress at wall

w Angle of wall surface with respect to axis
Subscripts

aw

Value at adiabatic wall conditions

Value at free-stream static conditions
Value for incompressible flow

Value at free-stream stagnation conditions
Local stagnation temperature

Total

Transformed

Evaluated at the wall

Superscripts

»

’,

Evaluated at M =1 except 5*

Evaluated at reference temperature
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INTRODUCTION

Many investigators have studied the problem of calculating the
growth of turbulent boundary layers. For the incompressible adiabatic
case, such calculations are fairly straightforward since they depend
only upon the empirical relationship of the skin-friction coefficient with
Reynolds number when the pressure gradients in the direction of flow
are favorable or absent (Ref. 1). Even in the presence of adverse
pressure gradients, empirical methods have been devised for the
purpose of predicting the location of separation (Ref., 2),

As the speed of the gas outside the boundary layer increases, the
effects of compressibility on the skin-friction coefficient must also be
taken into account, For many cases in supersonic flow, the heat
transfer between the gas and the wall may be neglected and methods
such as Tucker's (Ref, 3) may be used to calculate the boundary-layer
growth., There is enough difference, however, between the free-
stream static temperature and the adiabatic wall temperature that some
intermediate ''reference'’ temperature must be used for evaluating the
compressible skin-friction coefficient in order to obtain good
correlation with experimental results, Tucker uses a reference
temperature equal to the arithmetic average of the adiabatic wall
temperature and the free-stream static temperature,

For gases with a Prandtl number of 1, the adiabatic wall tempera-
ture is equal to the stagnation temperature and the thermal boundary
layer has the same thickness as the velocity boundary layer. For
gases such as air which have a Prandtl number less than 1, the
adiabatic wall temperature is less than the stagnation temperature
and the thermal boundary layer is thicker than the velocity boundary
layer. Bartz (Ref. 4) attempts to take this effect into account,
together with the effect of heat transfer, by obtaining simultaneous
solutions of the momentum equation and the energy equation, He,
however, restricts his solution to a one-seventh-power velocity profile
and uses a reference temperature equal to the arithmetic average of
the wall temperature and free-stream static temperature,

When the wall temperature is much lower than the adiabatic wall
temperature (often the situation at hypersonic speeds), the reference
temperature should be somewhat higher than the arithmetic mean
between the wall and free-stream static temperature as shown by
Sommer and Short (Ref, 5) and Tendeland (Ref, 6). The reference
temperature suggested by Eckert (Ref, 7) correlates with existing
data as well as that used by Sommer and Short. Persh (Ref. 8)

Manuscript released by authors January 1959,
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attempts to account for this same effect by using a reference tempera-
ture equal to the temperature at the edge of the laminar sub-layer,
where this temperature is defined as a function of velocity ratio
according to Crocco's quadratic modified by using the adiabatic wall
temperature to account for the Prandtl number being less than one.

One important use of an accurate method of calculating turbulent-
boundary-layer growth at hypersonic Mach numbers is in the design of
axisymmetric hypersonic wind tunnels. The perfect-fluid (potential-
flow) contour can be accurately calculated by the method of character-
istics, but the attainment of uniform flow in the test region depends
also upon the accuracy of the boundary-layer correction to the
theoretical contour, Each of the available methods of calculating
boundary-layer growth possessed some drawback. This fact led to the
development of the method described herein, which utilizes a modifi-
cation of Stewartson's transformation (Ref. 9) to aid in the integration
of the momentum equation. The main difference, however, between
this method and other methods is in the evaluation of the compressible
skin-friction coefficient and the transformed form factor. In order to
simplify the calculations, a new empirical equation was developed for
the incompressible skin-friction coefficient which agrees with experi-
mental data over a range of Reynolds number (Ry;) from 10° to 10°.
Excellent correlations have been obtained between experimental values
of boundary-layer displacement thickness and those calculated by this
method.

Since this method was developed primarily for hypersonic wind
tunnels, it may not be suitable where adverse pressure gradients are
present or where the temperatures are sufficiently high to cause
dissociation,

DEYELOPMENT OF METHOD

MOMENTUM EQUATION

For the purpose of this report, steady compressible flow is
assumed. Thus, the von Karman momentum equation for axisymmetric
flow can be written in the form:

d_9+9[ 2 - W +H 1&+17dr]: Cs

de M+ 2w s de z (1)

In order to obtain a solution for the momentum thickness ¢, the values
of M, N, r, and C; must be known as a function of distance s along the
surface, For many cases, such as wind tunnel nozzles, these values

are known as a function of distance x along the center line. Since
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ds  _ dry _
- 1+(dx) = sec (2)
Eq. (1) may be written as
2 B C
49 , 4 2- M +H dM 1 dry G
dx y -1 dx r de 2 (3)
M<1+ 2 M’)

When o is small, the assumption that sec « =1 can be made with
negligible consequences,

It can be recognized that Eq. (3) is a linear, first-order, ordinary
differential equation of the form

g—f + 0Pkx) = Qx) (4)
which has the solution

g(x) = e ~J Pax [fQ (x) e fPax dx + constant] (5)

Since P(x) and Q(x) are generally non-analytic functions of x, numerical
methods must be used to evaluate the indicated integrations.

The solution of Eq. (3) is considerably simplified, however,
through the use of the equations

y+ 1 y+ 1
-1 20-17 T, \2y=1)
6 = 0 (1 + Lo ) 20T o gy (Do)t (6)
and
Ho= He(1e Y50 a0) + Yot (78)
or
T,
H + 1 = (H[r + 1) Te (7b)

which are obtained from Stewartson's transformation as shown in
Appendix A. By substituting Eq. (6) and (7) into Eq. (3), the equation

y+1

46y, O dM etr e _ G Te)?(}"‘l) 8
e I R N & (8)
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is obtained. By multiplying Eq. (8) by tM>* " | the left-hand side
becomes a perfect differential if H,, is assumed to be constant over
the interval of integration, Therefore,

y+1

2+ Hy ) _ 2+ Hy, b 2+ Hy, C; / T\ 2y-1
(0“ rM t )h (eu- rM t)a = j: rV Y gec w - <—ro—> dx (9)
Thus, the solution of the momentum equation is reduced to a single
integration which, in general, must be accomplished by numerical
methods.

Substitution of Eq. (6) into Eq. (9) yields

y+1 y+ 1
L2+ Hey/Te \ 20/~1) 2t He /T2 y— 1)
oryt 2+ Mur(fe ) = eem P R () 200

y+1
b T \NSmwv_3v
= f er+H" sec %f~<1—.e—)2(y l)dx (10)

[¢]

It may be noted that, as long as Hi as defined by Eq. (7) is approxi-
mately constant, Eq. (6) and (7) may be considered to be merely
integrating aids irrespective of the validity of Stewartson's transfor-
mation,

When there is no heat transfer and the Prandtl number is one, the
transformed form factor becomes equal to the incompressible value.
In an attempt to account for heat transfer and for Prandtl numbers other
than one, use is made of Crocco's quadratic for the temperature
distribution in the boundary layer according to the equation

T () - () () o

which is the form used by Persh (Ref. 8). As shown in Appendix A, the
use of this equation yields

o= () - () (12)

Combining Eqs, (7) and (12) gives

Tw | Taw
Hu = B v e 1 (13)

which relates the transformed form factor in terms of the incompressible
value and the temperature ratios,

10
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For the evaluation of Eq. (1) for a particular problem, values of
r, M, o, and y are given as functions of x, With the wall temperature
given or assumed as a function of x, H;y may be found by Eq. (13) in
terms of Hj. Still remaining to be determined are C¢ and H;, which are
considered in subsequent sections,

DETERMINATION OF C;

The compressible skin-friction coefficient C; in Eq, (10) is a
function of Mach number, Reynolds number, and heat transfer and is
defined in terms of the shearing stress at the wall,

Cy 7
2

w

De Lle2 (14)

In the evaluation of C;, efforts are made to obtain empirical correlations
with the incompressible value which is a function of Reynolds number
based either on the momentum thickness or distance,

2T B ul : ; (15)

The assumption has been made that there is some reference point in
the compressible boundary layer where the temperature and density
are such that

GO T Z F(RN - G
2 p u,
(16)
where
’ A
Rg~ = £ te
’ : (17)
R, = ~p&,,’f
o (18)

and the values of p” and u’ are evaluated at the reference temperature.
Therefore,

(19)

since the pressure is assumed to be constant through the boundary
layer,

It may be shown, however, that

Te

, Te_ ’

11



AEDC-TR-59-3

by using the power-law equations for skin-friction coefficient

F(Rp") = —2——
(RgY N (20)
and
e
(R /)N+l (21)
where
o
N
5 - a—l_
<N+l) N+ 1 (22)
N

can be derived from the incompressible relationships. In the absence of
pressure gradient, Eq. (1) can be written as

46 C
dx - Tf (23)
If
Co_ Te pey - Te ___a
’ - ’ l
£t b (Pl )y (24)
then
1 1
0N a0 - (Te)a (Y dx (25)
- ( T’) “ (a'ue)
and, after integrating,
_N_ N
Cel8 (L Tt e) T
2 T x T A\T ) A (26)
(R,7) N1
On the other hand, if
Cy _ Te _ T ___,,,,[_3_____
o Tz G(Rx ) T/ ’ 1 -
(_Lm_) N+l (27)

12
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then

P te x VAT (28)
and, after integrating,
ce_ o0 _ 1.  “¥E o _r, O} T
P T’ (Rx,)ﬁ T’ (RX/)Ni—l (29)

It is obvious that Eq. (26) is not equal to Eq. (29), and therefore
Eq. (24) and Eq. (27) cannot both be correct, Experimental correlation
must be made to determine which equation gives the better results,

The determination of the proper value of reference temperature to
be used must also depend upon experimental correlation. Eckert
(Ref, 7) suggests the relation

T = 05 Tw + 0.22 Taw + 0.28 Te (30)
which, if the recovery factor is equal to 0. 896, becomes

T’ = 0.5 Ty + (0.5 + 0.0304 M) Te (31)
Sommer and Short (Ref. 5) suggest the relation

T = 0.45 Ty, + (0.55 + 0.035 M?) Te (32)
which, again if the recovery factor is equal to 0. 896, becomes

T = 045 Ty + 0.195 Taw + 0.355 Te (33)

Eckert's relation shows slightly greater effects of both heat transfer
and Mach number than does that of Sommer and Short and appears to
give slightly better correlation with the meager amount of data which
exists at hypersonic Mach numbers, In order to take into account the
effects of variable specific heat, Eckert suggests the use of a reference
enthalpy

h’ = 0.5 hy + 0.22 haw + 0.28 he (34)

for evaluating the physical properties of the gas. Although the
derivations described herein are developed for constant specific heat,
this modification can be easily substituted throughout.

13
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The correlation of theoretical results with experimental data can
be made by comparing the ratios of compressible skin-friction
coefficients to the incompressible value at the same free-stream
Reynolds number. Most of the experimental data have been obtained
in wind tunnels. In the supersonic range up to a Mach number of about
5, stagnation temperatures are of the order of 100°F or 560° R while
the static temperatures decrease with increasing Mach number until a
value of about 100°R is reached. At higher Mach numbers, the
stagnation temperature is increased to maintain the static temperature
at about 100°R in order to avoid liquefaction of the constituents of the
air, The temperature variation which is suggested for correlating
wind tunnel results is shown in Fig. 1 along with Eckert's reference
temperature for the adiabatic wall condition. The temperature range
is so great that a simple power law for the variation of viscosity with
temperature is not valid, and Sutherland's law must be used above
198.7° R. Below this temperature, there is some meager evidence
that the viscosity varies proportionally with the temperature (the curve
is tangent to the Sutherland curve). Misleading results can be obtained
if such factors are not taken into account for correlation over a wide
range in Mach numbers. )

A correlation of C¢/Ci, as a function of Mach number is shown in

Fig, 2. The experimental data were taken from Refs. 10 through 17
and are for approximately adiabatic wall conditions. The values of C,

used for the ratios were obtained from the relation

c 0.088 (log Ry, — 2.3686)
f. = - —
! (log Ry, ~ 1.5)° (35)

which is developed in Appendix B. The values of C; were obtained
from the relation

T 0.088 (log R, " ~ 2.3686)

Cr = e
= (log R, " = 1.5)° (36)
where
[ p’ue X — Te#e
Ry = e T'n’ Rx (37)

and Ry, the free-stream Reynolds number, is the same as Ry, for this
curve. The static and reference temperatures from Fig. 1 were used

to obtain the ratio of C/Cy, shown in Fig, 2. The good correlation

shown indicates that Eq. (36) provides an adequate method of determining
C; for use in Eq. (10). It should be noted that Eq. (36) is of the general
form of Eq. (27) which therefore represents experimental results

better than Eq. (24).

14
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Much of the experimental data is available in terms of Rg, The
corresponding value of Ry can be found from Eq. (36) in the same
manner in which Eq. (29) was obtained from Eq, (27).

« T, 0.044 (log R, — 2.3686)
- e URRLIOR My T o<:2B900 g

? fo T’ (log R, — 1.5° X (38)

After integration

Cp _ 0 _ kg _ . 008
2 X R T’ (log R~ = 1.57 (39)
Therefore
R, = w0044 R,

07 W, UogR, - 1.5)7 (40)

From this equation, the determination of Rp is straightforward when Ry’
is given; however, when Rg is given, Rx” must be found by some
iterative method such as Newton's, In a similar manner,

00~ o, - rar (41)

Once Rx” and Ry, are found to satisfy Egs. (40) and (41), C; and Cj, can
be found from Eqgs, (36) and (35) for Rg - Ro, and a new ratio of Cp/Cy,

can be determined. Such a ratio is shown in Fig, 3 along with
experimental data from Refs. 10, 11, 18, 19, and 20, Again, good
correlation is shown, indicating that Eq. (36) is satisfactory for the
determination of Cj,

DETERMINATION OF H;

As shown previously by Eq. (13), the transformed form factor can
be expressed in terms of the incompressible, adiabatic form factor and
temperature ratios. It is further shown in Appendix B that H; is related
to Cf.l by

Hi = —-—-L 42
' 1-7 VG /2 (42)

and is, therefore, a function of the incompressible Reynolds number.
Thus, there remains the problem of determining the relation between
the compressible and incompressible Reynolds number,

In the transformation of Eq. (3) into Eq. (8) by means of Eq. (6)
and (7), no transformation of x was involved. However, Eq. (8) can be
written as

15
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DAL
d 2(y—-1)
—6L+—Q‘Lﬂji(2+H")+LL=£&secw(%)V

dX U dX r dX X 2 o (43)

where U, is the transformed velocity (Appendix A) and the transformation
dx/dX must be defined. For incompressible flow, the momentum
equation can be written as

dei + 9i uei (2+"[) + ei AL = i sec w

ue, dx; r dx; 2 (44)

dx;

with fluid properties p, and x, evaluated at T,. Comparison of these
equations indicates that the transformed flow may be considered in-
compressible if

y+1

X _
dx  Cp \ T,

(45)

where C; is obtained as a function of Reynolds number based on x and
Ci, is obtained as a function of Rx = po Ue X/po .

The original Stewartson's transformation used the relation

3y -1

o (Tri,)z(w) - (3 ) fory - 14 (46)

Culick and Hill (Ref, 21) using the stagnation temperature as a
reference temperature obtained the relation

_rxl  N-1 _ 1
>:>.(y—1)Jr N L

= (11:"> for y = 1.4 (47)

o

(T
TO

Mager (Ref. 22) using a still different approach obtained the relation
y+1

20-1
(1) e () tey-a (48)

which reduces to Stewartson's transformation if the viscosity is assumed
proportional to the temperature,

If Eqs. (35) and (36) are substituted into Eq. (45), the result is,
since Rx = Ry,

AL
_9. . 2y—-1 - ] 17— 9. .
po  (log Ry=2.3686) yp ( re ) YT T (o Ry'-2.3686) 4" 4p (49)
Po Ue (log Ry — 1.5} Ty T (log B, " — 1.5) pu,

16
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which, after integrating, yields

y+1
Ho Ry _ (Te )20’_1) Te n Ry’
Po Ue(log Rx - 1.57 To L P’ ue (log Ry " - 1.57 (50)
Since
1
. L
Ue _ (To)(z’ Po _ (To))’—l’ and  Pe _ T’
Ue Te Pe Te p’ Te
Eq., (50) reduces to
RX _ [L’ Rx’
(log Ry — 1.5)° fto (log R, —1.5)°? (51)

which relates the incompressible Reynolds number to the reference
Reynolds number, Eq. (51) cannot be solved directly for Ry, but the
use of Newton's approximation with Ry = (¢7po)Rx” as the first
approximation yields as a second approximation

d ’ ’ ’ ]
ﬁlﬂ" ( #& - 1.5)
Rx = o, Fo "/ _0.8686
(]og #TR" ~2.3686) x = 1.5) (52)

which is sufficiently accurate to determine Cj, from Eq. (35). This
value of Ci, is then used in Eq. (42) to determine H;, after which I can

be found from Eq. (13) for use in integrating Eq. (10).

APPLICATION TO AXISYMMETRIC TUNNELS

In the application of Eq. (10) to calculate the boundary layer growth
of an axisymmetric wind tunnel, the calculations are usually begun at
the throat where the Mach number is unity. Equation (10) can thus be
written

( Y+l y+r1i
r T, 2(y—1) 2+ H,y, N T2 1)
L6+ (%) M = e ()

x y+1
’ 2(y—-1) 2+H
+frT (—,FL) Yo e S e v dx (53)
r r, 2
x‘

17
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In many cases, the momentum thickness at the throat 6* can be assumed
to be equal to zero without appreciably affecting the values calculated
near the end of the nozzle.

The Reynolds number at the throat must be based upon a value of x
which is other than zero in order to start with a finite value of Cf, A
useful approximation for this initial value of x* can be obtained in the
manner suggested by Sibulkin in Ref, 23. The velocity gradient at the
throat is obtained in terms of the radius of curvature at the throat:

[du{, - %
dx | o y;lﬁ VTORY (54)
It is then assumed that the velocity gradient is constant from zero to
the throat so that
[ue]M :L _ a, _ |:due
x* YFL L. dx |y, = 1 (55)

Therefore,

"*=\/JZIF*“* (56)

The Reynolds number at each point along the nozzle is thus based upon
a value of x equal to x* plus the distance from the throat to the point.
In general, the distance s along the nozzle contour may be assumed to
be equal to the distance x along the axis for the purpose of determining
the Reynolds number,

The above approximation can also be used to estimate the momentum
thickness at the throat with the additional assumption that the values
of the reference temperature and the reference Reynolds number are
constant and equal to the values at the throat., Equation (10) may then
be written

+ +
Y+l r+l .,

<L , 1

«f TSN20-D T, Cq r T, \2(yr— 1) 2+Hy du, /dM

() e A () o ae M )
L]

Since

N S L N (58)

18
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and

du, a,

M (1 .Y 21 M’)’/z (59)

thus, after substitution and rearranging,
5Y—3
0.044 (logRy+’ - 2.3686) T, \/r* R* ()’;_1)4()/—1) 1 M1-5+Hn M

(log Rys "= 1.5)° T*’ 11y—9 (60)
. (1 N yT—l M,)a.(y—l)

6* -

or, wheny =1,4,

6* =

(log Rye "= 1.5)° T*’ (1+ 0.2M2) (61)

, 1.5 +
0.0694(log Ry« "~ 2.3686) T, y/r* R-fl p s T He
[+ ]

The integration indicated in Eq. (61) can be performed analytically for
values of H; which are odd multiples of 0.5. For intermediate values,
the integration must be performed numerically, The results of such
integrations are shown in Fig, 4.

For conical nozzles in which radial flow can be assumed, the
Mach number is constant over each spherical segment of area 27 r*/(1 + cos w).
Since the throat area is #r*,

yrr
- 2(y-1)
A 21 ) 1+ y21 mt|
A*  (l+coswr*? M )’:1 (62)
or
y+1

y-1 4(y-1)
L=,’1+cosw 1+2—M;‘
r* 2M y+1 J (63)

2

from which

5-3Yy
y—-1 4y—1
dr r* 1+ cosw (M - 1)(1 M Mn)
aM T2 oM y+1
(L) (64)
2

19
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Then, since dr/dx = tan w

5—3Y

y-1 )4()/—1)
dx = c* 1+ cos @ (M: - 1)(1 + 2— Mz cot @ dM
2N owe y+1

(y_ﬂ)uyﬂ) (65)

2

Substituting Eqs., (63) and (65) into Eq. (10) yields
y+1 y+1
T. \20/— 1) 2+H,, T, 20/~D 2+H,,
o (T o (3T

b
» 12 _ Ht
r* (1 + cos ) Ciclw M -1)MTtr Cy/2 aM (66)
rrl 1+ 221 e
4(}’+l ) 2(y-1) 2
2

As before, if the reference temperature and reference Reynolds number
can be assumed to be constant,

Y+l _y+l 1
. Te \20—1) , 2+Hee| . Te\ 20D , 2+He|
[0 TT'('ro) M b 0 % T:) M Ja

b
t* (1 +cos w) csc w T, Cy’ M — )M Her M (67)
rei (750 W)

8(y+£) 2()/—1)T a 2

2

and, if y = 1.4,

o a (e - [ (@) e,

’ w b
.\ 0.00637 (log R, * ~ 2.3686) T, r* cot 5 M~ 1) MHer d M (68)
(1+0.2 M)
a

(log R, " - 1.5 T~

The integration indicated in Eq. (68) can be performed analytically
when Hy is an integer and numerically when Hir is not an integer. The
results of such integrations are shown in Fig, 5 where the integration
in each case is performed, for convenience, over the interval from
1to M., Obviously,

[P EM M = flbf(M)dM S ARLOLY

a

20
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For the general case of conical and contoured nozzles, the reference
temperature and Reynolds number are not constant, and for the con-
toured nozzle the radius is not an analytic function of the Mach number,
Equation (53) must therefore be used downstream of the throat while
Eq. (60) or (61) can be used to estimate the value at the throat, In
many cases, the variation of Rx over the length of the nozzle is small
enough that a constant average value of ll; can be used and the computa-
tions involved can thereby be simplified.

Values of boundary-layer displacement thickness calculated by the
method described are compared with experimental values in Figs, 6
and 7 for Mach 7 and 8 conical nozzles and in Fig, 8 for a Mach 8
contoured nozzle, The experimental data were obtained in the 50-inch-
diameter nozzles of the Gas Dynamics Facility, The agreement shown
is considered to be extremely good.

CONCLUDING REMARKS

A method has been developed for calculating the growth of a
turbulent boundary layer at hypersonic Mach numbers, Excellent
agreement with experimental results from axisymmetric nozzles has
been obtained through the application of this method. The basis for the
calculations is Eq. (10) wherein the compressible skin-friction
coefficient is obtained from Eq. (36), and the transformed form factor
is given by Eq. (13) in which the incompressible form factor is related
by Eq. (42) to the incompressible skin-friction coefficient evaluated at
the incompressible Reynolds number given by Eq. (52).
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APPENDIX A

STEWARTSON'S TRANSFORMATION

In the Stewartson's transformation, as given in Ref, 9, the distance
normal to the surface is transformed by the relation

= P2

and the velocity parallel to the surface is transformed by the relation

U=u 3o (A-2)

Ue = Ue :O (A‘3)
so that

U

TR (A-4)

The definition of boundary-layer momentum thickness is

AL .
6 i[ pepue (1 B u_e)dy (A-5)

where A is the value of y where both velocity and temperature reach
their free-stream values. Substitution of Eqs. (A-1) and (A-4) into
Eq. (A-5) yields

A
6=5—f o (1 - §)av (A-6)

The transformed momentum thickness is defined as

A
6”=L U (- ) ay (A-7)
so that

6 = Lole 6, (A-8)

Pede
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or

y+1 y+1

6 = Gn(l + _Y_;_l_ M,)z‘w—_n - 6, (";Z)W

(A-9)
It may be noted that Eq. (A-7) has the form for incompressible flow,
although the shape of the velocity profile is distorted by the trans-

formation (see Ref. 24).

In a similar manner, the boundary-layer displacement thickness is
defined by the equation

A
o ZJ; (1‘ 2?;’%;)‘” (A-10)

Since the pressure is assumed to be constant through the boundary
layer, Eq. (A-10) may be written as

A .
5* =J; .;;T ('Ire - *:]Te—) dy (A-11)

The static temperature distribution through the boundary layer may be
expressed by

i 112 (1 e X5 w) - 250 M<‘_) (A-12)

where Ts is the local stagnation temperature corresponding to the local
static temperature T. Substituting Egs. (A-1), (A-4), and (A-12) into
Eq. (A-11) yields

A
5% = %:_S: fl:(1+ 2’2_)1 !\12)(%——%]:)4- Z;ﬂl M’%(l-—%)}dY (A-13)
o

or

5% - Ml:(l + y-1 M’>5"*+ }’;1 M? 6”]

Pe ae 2 (A—14)

where, by definition

A
Bue* =f(fr— - o) dY (A-15)
]
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When Ts is constant and equal to T,, Eq. (A-15) has the form for in-
compressible flow,

Division of Eq. (A-14) by Eq. (A-8) yields

S Y=l 4} Ou* . y-1 -
’9"(1+ - M) e Ty (A-16)

or

-1 2 —-1 2
o=l (1+ X)) o Lo (A-17)

Equations (A-9) and (A-17) were used to transform Eq. (3). Equation
(A-15) may be written as

A
Su* = f [('rl“ - 1> * ( - _uu)] Y (A-18)

A
bt o Yay e
the = 3, f( o)Ay e (A-19)

so that

where

A
i = 5 f (1- ) 4 (A-20)

In order to evaluate Eq. (A-19), use is made of Crocco's quadratic
temperature distribution, written as in Ref. 8,

T (R ) - () () (A-21)

€

which assumes that the thermal boundary layer has the same thickness
as the velocity boundary layer, This would occur only if the Prandtl
number is unity, However, Eq. (A-21) partially accounts for Prandtl
numbers other than unity through the use of the adiabatic wall tempera-
ture instead of the stagnation temperature. Substitution of Eq. (A-21)
into Eq. (A-11), along with Egs. (A-1) and (A-4) yields




AEDC-TR-59-3

or

A
[ f D]

“ H; + T, -1 (A-24)
Equations (A-24) and (A-17) may be combined so that

T Taw
Hu = Hj T—:+ o 1 (A-25)

The variation of 1 according to Eq. (A-24) as a function of Mach
number is compared in Fig. 9 with experimental results from Refs. 10
and 25 and in Fig, 10 with the tabulated results from Ref. 26, The
correlation is considered to be very good and justifies the derivation
described.
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APPENDIX B

INCOMPRESSIBLE SKIN-FRICTION COEFFICIENTS

A great many empirical equations have been developed for the
variation of the local and mean skin-friction coefficients with Reynolds
number for incompressible flow, Probably the most simple to use are
the power-law equations

Cy,
7T (B-1)
(Rei) N
Cy, B
7~ = 1
<in)N‘+f (B-2)
Cr, Rg. N Cy.
g = T{x; - - (B-3)
where
N
_ a N+1 .
B = 1 (B-4)

N+ 1 N +1
N

For a limited range of Reynolds numbers, values of a«, 8, and N can be
considered to be constant; but, for a large range of Reynolds numbers,
their values must also be functions of the Reynolds number.

Locke (Ref, 27) investigated a number of the empirical equations
and found that Schoenherr's equation

_0.242 <
Vg, EEr ) (B-5)
gave a good correlation with a very large amount of experimental data
over the wide range of Reynolds numbers from 10° to 10°, Other forms
of this equation are

0.242
vV Cp,

1

(B-6)
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and

Cq (0.242 )

i log (2Rg, ) [log (2RH,) + 0.8686 (B-7)

Although Schoenherr's equations correlate well with experimental
results, they are difficult to use because neither Ci, or Cr, can be found

directly as a function of Rx;. Tables can be constructed for use when the

computing is done manually; however, more direct equations are desired
for use with automatic computers. Any set of equations must satisfy the
relationship

dCp,
Ci; = CF; + Ry “dR.. (B-8)
or
1 R
Cr. = Cs. dRy,
F; in fo £ i (B_g)

After an investigation of several types of equations, the equations

_ 0.088
CFI - (lOg in _ 1‘5)2 (B"].O)

and

c 0.088 (log R, — 2.3686)
f. =
! (log Ry, ~ 1.5 ) (B-11)

were found to correlate with experimental data as well as Schoenherr's
equations over the range of Reynolds numbers from 10° to 10°, A
comparison of values of Cr, calculated from Eq. (B-10) with those from

Eq. (B-5) is shown in Fig. 11 together with the "ideal' values from
Ref. 28 and 29. A similar comparison of values of C¢; is shown in

Fig. 12 together with experimental values of Dhawan (Ref. 30), Schultz-
Grunow (Ref. 31), and Kempf (Ref. 32). These data are recognized as
being among the most accurately determined values available. A
further comparison of Rg, as a function of Rx, is made in Fig. 13 with

the experimental values of Wieghardt (Ref. 33). All of these com-
parisons indicate the validity of Eqs. (B-10) and (B-11).

A critical examination of the curve of Eq. (B-10) shows that it
crosses Schoenherr's curve at a Reynolds number of about 10° and again
at about 5 x 10", Moreover, it goes to infinity when log Ry, =1.5 or

Rx, =32. Furthermore, the curve of Eq. (B-11) has zero slope when
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log Rx, =2.3686 or Ry, =234. Both of these conditions are well below

the range for turbulent boundary layers and are, therefore, of
academic interest only. The values of the constants, 0.088 and 1.5,
could have been chosen to agree better with Coles' values but the
experimental values do not warrant such a selection,

The incompressible form factor H; is also a function of Reynolds
number and is shown in Ref, 29 to be related to the skin-friction
coefficient in the manner,

H; = 1

1-7 \/CflT (B-12)

where the constant 7 (although different from that of Ref. 29) is chosen
for correlation with experimental data, Such correlations are shown
in Figs. 14 and 15. Again the correlations are quite satisfactory.

For comparative purposes, values of Cr,, Ci;, Rg,, and ll; are
listed in Table 1 for various values of Ry, from 10° to 10°. Also

listed are the values of N obtained from Eq. (B-3) which show that the
use of Egs. (B-1) and (B-2) must be limited to small ranges of
Reynolds number.
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TABLE 1

INCOMPRESSIBLE SKIN FRICTION VALUES

O o~ O Ew N
Mo oMM MMM
= =
(@] (@]

-~

O @ ON\NLETW D

MM MM MMM

.003731 .00L662 1632.0 1.433L

Cr, Cr, Ry, I N
105 005401 00718k 359,2 1.5726 .03

2 x .00L699 .006091 609.1 1.5135 .38

3 x .00L3L8 .00556L 83L.5 1,845 .58

L x 004122 .005230 1046.0 1.L658 .72

5 x .003959 .00L991 1248.0 1.4523 .83

7 x

8 x .0036LY .004539 1816.0 1.Lh261 .07

9 x .003571 .00LL35 1996.0 1.4200 .13

.003507 .00L3L6 2173.0 1.L14L7 .18 AN

.003127 .003818 3818.,0 1.3827 .53

.002986 *f  ,003596 539340 1.3707 .73 A2

.002805 .003381 6761.0 1.3553 .87 S

.002712 .003256 8139.0 1.3L73 .99

.002639 .003159 9L76.0 1.3410 .08

.002580 .003080 10780.0 1.3359 .15

.002530 .00301} 12060,0 1.3315 2

.002L87 002958 13310.0 1.3277 .28

.002L150 .002909 | 1L4550.0 1.32L5 .33 -

.002223 .002615 26150.0 1.30LL .68

.002105 .002L,63 36950.0 1,2938 .88 s 6

.002027 .002363 ,7270.0 1.2868 .03 ,

.001969 .002290 57250.0 1.2815 .

.00192k .002233 66980,0 1.2773 .
.001887 .002186 76500,0 1.2739 .
.001855 .0021L6 85850,0 1.2709 .
.001828 .002112 95060,0 1.268L .
.001805 .002083 104100,0 1.2663 .
.001660 .001903 | 190300.0 1.2526 .

.001531 .001745 | 3L8900.0 1.2L0?
.001L63 .001661 | L98,00.0 1,2335
.001417 .001606 | 6L2300,0 1.2290
.001383 .00156l 782200.,0 1.2256

NN OoNONONONONONON\VNnlnnnE SRR wWWWWWW
L ]
O\UI\»HCDJ?L"\»\»MEO O:)O\\»r\)r\)HO\Om\l\nl-'l-'OS\Omﬂ\n\.uO
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